Langsung ke konten utama

SIFAT-SIFAT OPERASI HITUNG BILANGAN BULAT DAN PECAHAN


SIFAT-SIFAT OPERASI HITUNG BILANGAN BULAT DAN PECAHAN

Berikut merupakan sifat-sifat operasi hitung bilangan bulat:

a. Komutatif (Pertukaran)
Untuk setiap bilangan bulat a dan b, berlaku:
a + b = b + a      dan       a x b = b x a

b. Asosiatif (Pengelompokan)
Untuk setiap bilangan bulat a, b dan c, berlaku:
(a + b) + c = a + (b + c)      dan       (a x b) x c = a x (b x c)

c. Memiliki unsur identitas penjumlahan yaitu 0.
Untuk setiap bilangan bulat a, maka berlaku :
a + 0 = 0 + a = a

d. Memiliki unsur identitas perkalian yaitu 1.
Untuk setiap bilangan bulat a, maka berlaku :
a x 1 = 1 x a = a

e. Bersifat Tertutup
- Untuk setiap bilangan bulat a dan b berlaku a + b = c, maka c juga merupakan bilangan bulat.
- Untuk setiap bilangan bulat a dan b berlaku a x b = c, maka c juga merupakan bilangan bulat.
Maksudnya, jika bilangan yang dijumlahkan atau dikalikan adalah bilangan bulat maka hasilnya juga bilangan bulat.

f. Sifat Distributif Perkalian Terhadap Penjumlahan dan Pengurangan
Untuk setiap bilangan bulat a, b dan c berlaku:
a x (b + c) = (a x b) + (a x c)
a x (b - c) = (a x b) - (a x c)

Komentar

Postingan populer dari blog ini

PEMFAKTORAN BENTUK ALJABAR

PEMFAKTORAN BENTUK ALJABAR 1.     Suku-Suku dengan Faktor yang Sama ax + ay = a(x + y) Contoh: ·        3x + 6y = 3x + (3 x 2 )y = 3 (x + 2y)       => FPB 3 dan 6 adalah 3 ·        4x ² + 12x = 4x (x +3)     => FPB dari 4x ² dan 12 x adalah 4x 2.     Selisih Bentuk Kuadrat x ² - y² = (x + y)(x – y) Contoh: 4x ² - 25y² = (2x)² - (5y)² = (2x + 5y) (2x – 5y) 3.     Pemfaktoran Bentuk x ² + bx + c x ² + bx + c = (x + p) (x + q) dengan syarat: p x q = c p + q = b Contoh: ·        x ² + 5x + 6 Misalkan dipilih p = 2 dan q = 3, maka p x q = 2 x 3 = 6 p + q = 2 + 3 = 5, jadi p = 2 dan q = 3 yang dipilih benar. sehingga x ² + 5x + 6 = (x + 2) (x + 3) ·        x ² - 7x + 12 Misalkan dipilih p = -3 dan q = -4, maka p x q = -3 x -4 = ...

DIAGRAM VENN DAN OPERASI DUA HIMPUNAN

DIAGRAM VENN DAN OPERASI HIMPUNAN 1.     Diagram Venn Diagram venn digunakan untuk menggambarkan himpunan. Himpunansemesta (S) digambarkan menggunakan segi empat dan himpunan bagian dari S digambarkan menggunakan lingkaran. 2.     Operasi Dua Himpunan a.     Irisan ( ⋂ ) Irisan himpunan A dan B adalah himpunan yang anggotanya menjadi himpunan A dan himpunan B. Irisan himpunan dinotasikan dengan A ⋂ B = {x | x ∊ A dan x ∊ B}     A ⋂ B digambarkan sebagai berikut             b.     Gabungan ( ⋃ ) Gabungan himpunan A dan B adalah himpunan yang anggotanya merupakan anggota A atau anggota B. Gabungan himpunan dinotasikan dengan A ⋃ B = {x | x ∊ A atau x ∊ B}           A ⋃ B digambarkan sebagai berikut c.     Selisih (-) Selisih himpunan A dan B adalah himpunan yang anggotanya semua anggota dari A,...

PERTIDAKSAMAAN LINEAR SATU VARIABEL (PtLSV)

PERTIDAKSAMAAN LINEAR SATU VARIABEL (PtLSV) 1.     Bentuk Umum PtLSV Pertidaksamaan Linear Satu Variabel (PtLSV) adalah kalimat matematika yang memuat satu variabel berpangkat satu dan terdapat tanda ketidaksamaan (>, <, ≥, ≤ ) . Bentuk umumnya : ax + b > 0 ax + b < 0 ax + b ≥ 0 ax + b ≤ 0 dengan a ≠ 0 Contoh: 3x - 5 > 0 Penyelesaian PtLSV adalah mencari nilai dari variabel yang memenuhi persamaan tersebut. 2.     Sifat-Sifat PtLSV Sifat-sifat yang berlaku pada PLSV adalah: a.      Jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama tanda ketidaksamaan tetap. b.     Jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama, maka tanda ketidaksamaanya tetap. c.      Jika kedua ruas dikali atau dibagi dengan bilangan negatif yang sama, maka tanda ketidaksamaanya dibalik. Contoh PtLSV: Tentukan himpunan penyelsaian dari pe...