Langsung ke konten utama

PEMFAKTORAN BENTUK ALJABAR

PEMFAKTORAN BENTUK ALJABAR

1.    Suku-Suku dengan Faktor yang Sama

ax + ay = a(x + y)
Contoh:
·       3x + 6y = 3x + (3 x 2 )y = 3 (x + 2y)     => FPB 3 dan 6 adalah 3
·       4x² + 12x = 4x (x +3)   => FPB dari 4x² dan 12 x adalah 4x

2.    Selisih Bentuk Kuadrat
x² - y² = (x + y)(x – y)
Contoh:
4x² - 25y² = (2x)² - (5y)² = (2x + 5y) (2x – 5y)


3.    Pemfaktoran Bentuk x² + bx + c

x² + bx + c = (x + p) (x + q)
dengan syarat: p x q = c
p + q = b

Contoh:
·       x² + 5x + 6
Misalkan dipilih p = 2 dan q = 3, maka
p x q = 2 x 3 = 6
p + q = 2 + 3 = 5, jadi p = 2 dan q = 3 yang dipilih benar. sehingga
x² + 5x + 6 = (x + 2) (x + 3)
·       x² - 7x + 12
Misalkan dipilih p = -3 dan q = -4, maka
p x q = -3 x -4 = 12
p + q = -3 + (-4) = -7, jadi p dan q yang dipilih benar. Sehingga
x² - 7x + 12 = (x – 3) (x – 4)

4.    Pemfaktoran Bentuk ax² + bx + c


 
dengan syarat: p x q = a x c
p + q = b

Contoh:
2x² - 7x + 6
a = 2, b = -7 , c = 6
a x c = 2 x 6 = 12 = (-3) x (-4)
b = -7 = (-3) + (-4)
Sehingga di dapat p = -3 dan q = -4


LATIHAN SOAL!!!!
Faktorkan bentuk aljabar dibawah ini!
1.    -2x + 4y =........
2.    -x² + 4x²y =........
3.    3xy + 18y² =.........
4.    49x² - 36y² =........
5.    16x² + 4y² =.......
6.    + 18xy + 45 =.........
7.    - 3xy +10 =........
8.    + 5 xy – 24=........
9.    6x² - 13x – 5=........
10. 2x² - 3x – 9=..........
11. 4x² - 1=..........

Komentar

Postingan populer dari blog ini

PERTIDAKSAMAAN LINEAR SATU VARIABEL (PtLSV)

PERTIDAKSAMAAN LINEAR SATU VARIABEL (PtLSV) 1.     Bentuk Umum PtLSV Pertidaksamaan Linear Satu Variabel (PtLSV) adalah kalimat matematika yang memuat satu variabel berpangkat satu dan terdapat tanda ketidaksamaan (>, <, ≥, ≤ ) . Bentuk umumnya : ax + b > 0 ax + b < 0 ax + b ≥ 0 ax + b ≤ 0 dengan a ≠ 0 Contoh: 3x - 5 > 0 Penyelesaian PtLSV adalah mencari nilai dari variabel yang memenuhi persamaan tersebut. 2.     Sifat-Sifat PtLSV Sifat-sifat yang berlaku pada PLSV adalah: a.      Jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama tanda ketidaksamaan tetap. b.     Jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama, maka tanda ketidaksamaanya tetap. c.      Jika kedua ruas dikali atau dibagi dengan bilangan negatif yang sama, maka tanda ketidaksamaanya dibalik. Contoh PtLSV: Tentukan himpunan penyelsaian dari pe...

Bentuk bilangan pecahan

BILANGAN PECAHAN BENTUK BILANGAN PECAHAN Bentuk umum bilangan pecahan yaitu , dengan a dan b merupakan bilangan bulat dan . Bentuk pecahan ini   disebut juga dengan pecahan biasa dengan a disebut pembilang dan  b disebut penyebut.  Pecahan biasa ini memiliki beberapa sifat, diantaranya “ Jika suatu pembilang dan penyebut suatu bilangan dikalai atau dibagi dengan bilangan yang sama, maka akan diperoleh pecahan yang senilai.” Selain pecahan biasa ada juga pecahan desimal, pecahan campuran dan persen. a.      Pecahan desimal, contoh: 0, 35 ;   0,7 ; 0,29 b.     Pecahan campuran, contoh:  c.      Persen, contoh: 25% ; 76% ; 13% LATIHAN SOAL C Tentukan bentuk pecahan berikut! (pecahan biasa, pecahan campuran, desimal atau persen) 1.      2. 0,57 3.     31% 4.      2/10 5.   ...